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ABSTRACT 

Railroad accidents can cause economic harm that extends far beyond their own financial losses. 
As one of the most efficient modes of long-distance freight transportation, losses in line capacity 
and cargo due to accidents can disrupt the supply chain and lead to commodity shortages 
everywhere. Therefore, railroads are seeking affordable and effective safety technologies that 
can help to prevent accidents. However, uncertainties about the cost of those technologies and a 
general lack of knowledge about their potential performance are barriers to their adoption. This 
research applied several analytical techniques to gain insights about railroad accident 
characteristics and to assess the return on investment (ROI) from safety technology deployments. 
The techniques applied were exploratory data analysis (EDA), machine learning (ML), and 
benefit-cost analysis (BCA). The EDA revealed the trend that derailment accidents consistently 
approached 1,500 each year and that they accounted for more than 60% of the annual accidents. 
The EDA also revealed that the top three causes of accidents were human factors, track and 
roadbed problems, and mechanical failures. Annually, those causes on average accounted for 
81% of the accidents. The ML revealed that derailment type accidents were statistically 
associated with lower track classes, non-signalized territories, and areas with restricted limits of 
movement authorization. The ML also revealed that derailments were typically the result of track 
and roadbed problems and generally not associated with human error. The BCA showed that 
achieving a positive ROI required railroads to seek additional ways to benefit from the deployed 
positive train control (PTC) system designed to reduce the risk of human-caused accidents. One 
such additional benefit could come from adding onboard sensors that can use the PTC network to 
communicate track and roadbed problems that increase derailment risks. Railroads can use the 
BCA models to evaluate the tradeoff in safety technology investments and payback period. 
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1. INTRODUCTION 

The subsections below provide a background that motivated this research, the research 
objectives, and an overview of the report organization. 

1.1 Background 

Railroads are a critically important and efficient mode of long-distance transportation. Railroad 
freight movements complement those by trucks. Railroads move more than 40% of the long-
distance freight volume in the United States (BTS, 2020). Whereas trucks dominate freight 
movements within a 500-mile band, railroads dominate freight movements beyond 1,000 miles 
(BTS, 2021). Based on data summarized from the freight analysis framework (FAF) of the 
Bureau of Transportation Statistics (BTS, 2021), Figure 1.1 shows the proportional distance 
distribution of ton-miles by freight mode. The trend shows that, from 750 to 2,000 miles, 
railroads account for the largest proportion of freight movements in ton-miles. 
 

 
Figure 1.1  Distribution of distance traveled by freight mode 
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Figure 1.2 shows the trend in modal share for freight transportation in the United States (BTS, 
2021). It is evident that since 1980 railroads have been steadily increasing their mode share. 

The largest railroad network in North America, the Class I railroads, own and operate 
approximately 140,000 miles of maintenance-of-way (AAR, 2021). Figure 1.3 illustrates the 
North American spatial distribution of freight railroad traffic density in net tons (FRA, 2020). It 
is evident that, unlike roads, there are fewer alternative routes between point-to-point 
connections. 

 
Figure 1.2  Trends in freight transportation modal share 
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Figure 1.3  Extent of U.S. Class I railroads 

Therefore, losses in line capacity due to accidents can result in significant supply chain 
disruption and economic harm. Data summarized from the Federal Railroad Administration 
(FRA) equipment accident database indicate that railroads incur more than 2,500 accidents each 
year (FRA, 2021). Hence, in addition to transport capacity losses in the network, railroad 
accidents cause financial losses, fatalities, injuries, and property damage. 

1.2 Research Objectives 

The goal of this research is to create models that railroads can use to inform investment decisions 
in safety technology. The main objective of this research is to conduct a benefit-cost analysis 
(BCA) to determine technology cost thresholds as a function of their potential return-on-
investment (ROI). The general methodology is to: 

1. Identify and clean a comprehensive database of railroad accidents 
2. Assess the statistical trends of railroad accidents in terms of frequency, type, and cost 
3. Identify factors associated with the dominant railroad accident type and cause 
4. Assess solutions available to prevent most railroad accidents 
5. Create a BCA model to help inform investment decisions in potential safety technology 

solutions 
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1.3 Organization of Content 

The study begins with a literature review (Section 2) of key findings from relevant scholarly 
academic publications that examined accident causes and technology solutions. Next, the 
methods and results (Section 3) present the data sources and data cleaning (subsection 3.1); 
exploratory data analysis to visualize and gain insights into railroad accident trends (subsection 
3.2); statistical modeling to understand key factors in accident type, cause, and financial losses 
(subsection 3.3); safety technologies deployed to reduce accident risk (subsection 3.4); and 
finally a BCA to inform technology deployment decisions (subsection 3.5). Section 4 discusses 
some of the limitations of this study and Section 5 concludes the work. 
  



5 

 

2. LITERATURE REVIEW 

The literature review focused on two research areas: 1) accident contributor analysis, and 2) the 
assessment of safety-improvement technology solutions. The first category uses exploratory data 
analysis, data mining (DM), and ML techniques to produce insights into railroad accidents. The 
second category reviewed the performance assessments of various automated condition 
monitoring technologies and their effectiveness in reducing accident risks. These two categories 
of literature reviews help to highlight the potential for safety technology deployments to help 
prevent accidents. 

2.1 Accident Contributor Analysis 

Studies covering railroad maintenance and operations tend to outnumber those that cover railroad 
safety (Ghofrani, He, Goverde, & Liu, 2018). However, numerous studies applied ML and DM 
methods to reveal contributors of railroad accidents. For example, using ordered regression 
models, Dabbour et al. (2017) found that higher train and vehicle speeds were positively 
correlated with driver injury severity (Dabbour, Easa, & Haider, 2017). Using geospatial 
modeling techniques, Liu and Khattak (2017) found that gate violations were more highly 
associated with two-quadrant than with four-quadrant crossings (Liu & Khattak, 2017). Using 
random survival forest, Karamati et al. (2020) found that crash likelihood can decrease by 50% 
by adding audible alarm devices to crossings that already have gates and flashing lights 
(Keramati, Lu, Iranitalab, Pan, & Huang, 2020). Using extreme gradient boosting, Soleimani et 
al. (2019) identified highway rail-grade crossings that should be closed to prevent accidents 
(Soleimani, Mousa, Codjoe, & Leitner, 2019). By extracting and applying text mining methods 
to crash narrative data of railroad trespassing incidents, Wali et al. (2021) found that the use of 
headphones or cellphones was more likely to result in fatal injuries (Wali, Khattak, & Ahmad, 
2021). 

Liu et al. (2017) found that signalized tracks and those with higher class ratings and traffic 
density had fewer derailment type accidents (Liu, Saat, & Barkan, 2017). Wang et al. (2020) 
confirmed the expectation that the rate of derailments declined on tracks with fewer broken rails, 
irregular track geometry, and wheel-related equipment defects (Wang, Barkan, & Saat, 2020). 
Iranitalab and Khattak (2020) found that the random forest (RF) method outperformed others, 
such as logistic regression, Naïve Bayes, and support vector machine (SVM) in predicting the 
level of hazardous material (hazmat) releases (Iranitalab & Khattak, 2020). In a previous work, 
the authors compared the performance of multinomial logit (MNL), k-nearest neighbor (kNN), 
SVM, and RF to predict the crash severity of two-vehicle roadway crashes (Iranitalab & Khattak, 
2017). They found that kNN and MNL performed best. 

Researchers also used ML models to analyze other aspects of railroad operations (Ghofrani, He, 
Goverde, & Liu, 2018). Li et al. (2014) applied ML models to historical and real-time data of 
railroad maintenance needs to predict rules (Li, et al., 2014). Lasisi and Attoh-Okine (2019) 
predicted rail fatigue defects by using a combination of ensemble tree-based ML models (Lasisi 
& Attoh-Okine, 2019). 
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Text mining is emerging as another tool in accident analysis (Bala & Bhasin, 2018). Brown 
(2016) applied text mining to accident narratives in the FRA accident database to predict the cost 
of unusual railroad accidents (Brown, 2016). Williams and Betak (2019) found that the topic 
modeling techniques of latent semantic analysis (LSA) and latent Dirichlet allocation (LDA) 
were complementary in identifying the tractor-trailer trucks that are common in rail grade 
crossing (RGC) accidents (Williams & Betak, 2019). Soleimani et al. (2021) combined spatial 
analysis and text mining to identify RGCs that should be closed to prevent accidents (Soleimani, 
Leitner, & Codjoe, 2021). 

There were also some general findings from comparing ML model performance. Olson et al. 
(2017) found that the performance benchmarking of ML models is subjective because of its high 
relevance to the target problem (Olson, Cava, Orzechowski, Urbanowicz, & Moore, 2017). Cook 
(2007) found that subjective performance ratings depend on the level of acceptable risk for a 
given application (Cook, 2007). Therefore, it becomes difficult to quantify levels of goodness 
unless one standardizes on a rating scheme such as the fuzzy academic grading system (Echauz 
& Vachtsevanos, 1995). 

2.2 Assessment of Technology Solutions 

Several studies evaluated the effectiveness of using onboard sensors to monitor the condition of 
railroad tracks (Chia, Bhardwaj, Lu, & Bridgelall, 2019). Lee et al. (2012) estimated track 
geometry from the lateral and vertical accelerations measured by an accelerometer mounted to 
the axle box and bogie of a high-speed train (Lee, Choi, Kim, Park, & Kim, 2012). With a 
similar goal, Mori et al. (2013) estimated track irregularities by sensing the car body dynamics 
with a battery-powered device (Mori, Sato, Ohno, Tsunashima, & Saito, 2013). Balouchi et al. 
(2020) found that their onboard track monitoring system provided good agreement with ground 
truth measurements (Balouchi, Bevan, & Formston, 2020). 
 
As part of the Internet-of-Things (IoT) movement, more researchers have been evaluating the use 
of smartphones or smartphone-derived sensor technologies to measure car body dynamics 
(Fraga-Lamas, Fernández-Caramés, & Castedo, 2017). The deployment of positive train control 
(PTC) to enable connected trains has also increased its association with IoT (Brezulianu, et al., 
2020). Paixão et al. (2019) found that smartphones can help to forecast derailment risk because 
of their ability to measure accelerations (Paixão, Fortunato, & Calçada, 2019). An effective 
sensor-based system can combine many types of sensors to detect a multitude of problems (Li, 
Luo, Cole, & Spiryagin, 2017). One method is to merge the data from multiple sensors by using 
a wireless sensor network (Hodge, O'Keefe, Weeks, & Moulds, 2014). Bridgelall & Tolliver 
(2020) showed how combining signals from numerous measurements across the same track 
segment can reduce the localization errors from GPS reception issues (Bridgelall & Tolliver, 
2020). 

Advancements in artificial intelligence (AI) technology subsets such as DM and ML have led to 
analysis of other signals, such as vibration, sound, and image sensors, to identify accident risks. 
Tsunashima (2019) found that applying ML to vibration signatures can help to detect track 
problems (Tsunashima, 2019). Farlik & Tabaszewski (2020) found that although neural networks 
trained on vibration signals can help to detect track problems, the approach can be sensitive to 
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train speed (Firlik & Tabaszewski, 2020). Using SVM to analyze sound signals, Sun et al. (2020) 
found that the technique can be effective in predicting track switch condition (Sun, Cao, Xie, & 
Wen, 2020). In a similar work, Bukhsh et al. (2019) found that using tree-based classification 
models to predict switch maintenance needs can provide better interpretability than other 
methods (Bukhsh, Saeed, Stipanovic, & Doree, 2019). Sysyn et al. (2019) found that analyzing 
high-resolution images with ML models can be effective in detecting rail contact fatigue (Sysyn, 
Gerber, Nabochenko, Gruen, & Kluge, 2019). Lasisi and Attoh-Okine (2019) found that 
ensemble classification methods that use bagging and boosting techniques can be effective in the 
prediction of track defects (Lasisi & Attoh-Okine, 2019). 

Although sensing and AI techniques can be effective in predicting track failures, surveys found 
there are still challenges to their adoption. Yet, there has been little analysis at the intersection of 
engineering and railroad decision-making about technology adoption. Beyond costs, there are 
still challenges in training, deskilling, and technology performance (Brooks, Groshong, Liu, 
Houpt, & Oman, 2017). In a review of emerging technologies and issues in local line 
inspections, Ren et al. (2021) found that smaller railroads are seeking more affordable track 
inspection technologies than currently exist (Ren, et al., 2021). In general, this literature review 
reveals the gap in model development that could help railroads trade off price, performance, and 
ROI for the adoption of automated onboard safety inspection technologies. 
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3. METHODS AND RESULTS 

The overall approach of this study was to identify and clean data sources (Section 3.1), analyze 
the characteristics and extent of railroad accidents (Section 3.2), determine factors in accident 
causes and financial losses (Section 3.3), evaluate technology solutions available to help prevent 
railroad accidents (Section 3.4), and to develop a model to weigh the benefits and costs (Section 
3.5) in adopting safety monitoring technologies. 

3.1 Data 

The next two subsections describe the data sources used in the analysis and the data cleaning 
methods to prepare the dataset for further analysis. 

3.1.1 Data Sourcing 

This research used the FRA equipment accident database that contained records of more than 
26,000 accidents that occurred from January 1, 2009, to June 30, 2020 (FRA, 2011). Each record 
of the database contained 145 fields. This research also used the Topologically Integrated 
Geographic Encoding/Line (TIGER/Line™) shapefiles of U.S. counties from the U.S. Census 
Bureau to conduct spatial analysis (USCB, 2019). The data table associated with the TIGER 
shapefile contained 11 fields of descriptive and spatial data about each of the 3,108 continental 
U.S. counties. 

3.1.2 Data Cleaning 

Studies estimated that the use of dirty data costs the U.S. economy trillions of dollars every year 
(Ilyas & Chu, 2019). Data analysis techniques can also become useless when applying them to 
dirty data (Jesmeen, et al., 2018). There are a few common approaches to data cleaning, but 
every dataset has its own set of unique challenges that require custom approaches (Bridgelall, 
Lu, Tolliver, & Xu, 2018). Therefore, it is no surprise that data scientists spend 60% of their time 
on average cleaning and organizing data before further processing (Ilyas & Chu, 2019). The data 
cleaning methods used in this research involved the eight procedures summarized in Table 3.1. 

Table 3.1  Data Cleaning Procedures 
Procedure Actions 
Gap Pruning Delete attributes with large gaps of missing values. 
Correlation Filtering Highly correlated attributes are redundant, so detect and remove those. 
Feature Engineering Combine attributes and categories to reveal new information. 
Attribute Imputation Apply various techniques to estimate or predict missing values. 
Geospatial Repair Spatially impute replacement values for erroneous geospatial coordinate entries. 
Transformation Reduce distribution bias due to the skews. 
Normalization Map all values to the [0, 1] range. 
One-Hot-Encoding Expand categories of variables to numerical features. 

 
The gap pruning procedure removed attributes with large gaps of missing values, redundant 
variables, or irrelevant attributes. The correlation filtering procedure removed attributes that 
were highly redundant with other attributes. The feature engineering procedure relied on 
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heuristics in creating data synergies by combining a few less useful variables. For example, 
converting the fixed fields indicating the hour, minute, and AM/PM to a continuous variable 
reduced the data complexity and interpretability without loss of information. Another example 
was that reducing the number of categories of the “CONSIST” field from 14 types to six 
(“freight,” “passenger,” “work train,” “yard equipment,” “cars” and “locomotives”) yielded more 
sensible and cohesive categories that simplified the data analysis and enhanced the visualization 
of patterns. The attribute imputation procedure predicted missing values based on the mean, 
most frequent, or nearest neighbor in feature space (Abidin, Ismail, & Emran, 2018). It was 
important to fill missing values because some of the analytical techniques and mathematical 
methods used cannot work with missing values. 

The geospatial repair procedure detected erroneous geospatial coordinates (latitude and 
longitude) based on their mismatch with the county of the accident location. Approximately 22% 
of the geospatial coordinates were not within the county of the accident. The systematic skew of 
coordinates toward the southeast was due to low-resolution data entry or rounding off the 
decimal coordinates of the geospatial coordinates. The repair procedure replaced erroneous 
coordinates with those of the nearest station if available, or with the TIGER shapefile centroid 
coordinates for the county where the accident occurred. Figure 3.1 illustrates the systematic error 
of the geospatial coordinate entries prior to the repair. 

 
Figure 3.1  Systematic error in the geospatial coordinates of accident locations 

The next set of operations helped to improve the performance of feature importance and feature 
ranking algorithms that used ML methods. The transformation procedure converted the values of 
highly skewed attribute distributions to reduce bias toward exceptionally large or exceedingly 
small values (Manning & Mullahy, 2001). The procedure used the shifted natural logarithm, 
LN(1 + x), and value squaring to reduce right and left skews, respectively, of the feature 
distribution. The normalization procedure mapped all values of a continuous variable feature to 
the [0, 1] range. The mapping helped to improve the performance of ML models that applied 
gradient methods and to more easily interpret variable importance in linear regression models 
(Géron, 2017). The one-hot-encoding procedure expanded categorical variables to several binary 
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variables that enabled the use of ML algorithms that do not operate directly with non-numerical 
data. 

The workflow improved model generalization by removing outlier records to prevent bias from 
training on them. Table 3.2 summarizes the outlier removal algorithms compared and the 
hyperparameters selected to maximize performance. The receiver operating curve (ROC) metric 
and the associated area under the ROC curve (AUC) were the performance measures (Géron, 
2017). The best performing algorithm was the local outlier factor with 20 nearest neighbors and 
1% outliers. 

Table 3.2  Outlier Removal Algorithm Selection 
Algorithm Reference Hyperparameters AUC 
One class SVM (Liu, Ting, & Zhou, 2012) Nu: 1%, Kernel Coefficient: 0.01 0.881 
One class SVM (Liu, Ting, & Zhou, 2012) Nu: 1%, Kernel Coefficient: 0.1 0.878 
One class SVM (Liu, Ting, & Zhou, 2012) Nu: 10%, Kernel Coefficient: 0.01 0.879 
Local Outlier Factor (Breunig, Kriegel, Ng, & Sander, 2000) C: 1%, Neighbors: 10, Euclidean 0.879 
Local Outlier Factor (Breunig, Kriegel, Ng, & Sander, 2000) C: 1%, Neighbors: 20, Euclidean 0.882 
Local Outlier Factor (Breunig, Kriegel, Ng, & Sander, 2000) C: 1%, Neighbors: 50, Euclidean 0.880 
Isolation Forest (Liu, Ting, & Zhou, 2012) C: 0% 0.881 
Isolation Forest (Liu, Ting, & Zhou, 2012) C: 1% 0.880 
Isolation Forest (Liu, Ting, & Zhou, 2012) C: 5% 0.880 
Covariance Estimator (Rousseeuw & Driessen, 1999) C: 1% 0.817 

 
Table 3.3 lists the final set of variables after applying the various data cleaning methods. In 
summary, the data cleaning and transformation methods reduced the number of features from 
145 to 38. The one-hot-encoding then increased the number of features used by the ML 
algorithms to 74. The dispersion column shown in the table indicates the amount of information 
spread for each attribute. The measures of dispersion for the categorical and non-categorical 
variables were the entropy and coefficient of variation, respectively. 
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Table 3.3  Data Variables Selected After Cleaning 
Attribute Dispersion Type Description 
HC 0.672 Binary Target attribute: 1 if the accident type was human caused 
REGION 1.980 Categorical FRA region code for accident location 
LAT 0.133 Continuous Cleaned latitude coordinate 
LON -0.129 Continuous Cleaned longitude coordinate 
CLASS_RR 0.818 Ordinal Cleaned railroad class 
MONTH 0.541 Ordinal Incident month 
DAY 0.557 Ordinal Incident day 
HR24 0.562 Continuous Transformed time to fractional 24-hour 
TEMP 0.382 Continuous Temperature (degrees Fahrenheit) 
VISION 1.130 Categorical Visibility: {Dawn, Day, Dusk, Dark} 
WEATHER 0.952 Categorical Weather: {Clear, Cloudy, Rain, Fog, Sleet, Snow} 
TRK_TYP 1.010 Categorical Track Type: {Main, Yard, Siding, Industry} 
TRK_CL 0.755 Ordinal Track Class: {X as 0, 1 through 9} 
CWR 1.280 Binary 1 if the rail type was continuously welded, 0 otherwise 
SIG 1.855 Binary 1 if used signals to control train movements, 0 otherwise 
MOVEx 1.120 Categorical Movement: {Blocks, Control, Signal, Not Main, Restrict} 
TRK_DEN_LG 1.027 Continuous log(1+x) of annual track density in millions of gross tons 
TONS_LG 0.846 Continuous log(1+x) of gross tonnage, excluding power units 
TRNSPD_LG 0.606 Continuous log(1+x) of train speed in miles per hour (mph) 
SPD_OVR -1.335 Continuous Difference between train speed and limit for track class 
CONSIST 1.080 Categorical Consist: {Freight, Locomotive, Cars, Work, Yard} 
HUMANS 0.579 Continuous Number of humans present on the train 
HEADEND1 0.757 Ordinal Number of headend locomotives 
N_CARS 0.998 Ordinal Total number of cars (sum of loaded + empty cars) 
CARS_LD 0.766 Continuous Proportion of the number of cars that were loaded (0 to 1) 
CARS_HZMT 2.772 Continuous Proportion of loaded cars carrying hazardous materials (0 to 1) 
CARS 3.336 Ordinal Number of cars carrying hazardous materials 
CARSHZD 21.950 Continuous Number of cars that released hazardous materials 
ACC_TYPE 1.290 Categorical The type of accident {derail, collide, obstruct, etc.} 
CARSDMG 4.975 Continuous Number of cars damaged or derailed 
POSITON2 4.863 Continuous Position of car on the train that caused the accident 
EMPTYF2 2.926 Continuous Number of empty freight cars that derailed 
LOADF2 2.253 Continuous Number of loaded freight cars that derailed 
HEADEND2 3.340 Continuous Number of headend locomotives that derailed 
POS_CAR 0.923 Continuous Relative position of the first involved car in the train 
LOADED_1 0.929 Binary Is first involved car loaded? Missing (22%, 6568) 
ACCDMG 3.552 Continuous Total reported damage in U.S. dollars 
CASKLD 9.574 Continuous Total killed for all involved railroads 
CASINJ 20.339 Continuous Total injured for all involved railroads 

 
3.2 Exploratory Data Analysis 

The next three sections applied EDA techniques to the FRA accident database to reveal trends in 
accident frequency, accident causes, accident types, and the annual financial losses from 
accidents. 

3.2.1 Frequency of Railroad Accidents 

The FRA classifies the causes of accidents into one of the following five categories (FRA, 2018): 
1. Mechanical and electrical failures include those of axles, bearings, locomotive/truck 

components, wheels, and brakes 
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2. Track, roadbed, and structures that are defective such as poor track geometry, broken 
rail, inoperable switches/frogs, and settling roadbeds 

3. Human factors in train operation such as poor throttling/braking, ignoring 
signals/rules/orders, or deficient performance due to drowsiness or illness 

4. Signal and communications failures such as defective automatic stop device, power 
switch, radio, computer, and remote control 

5. Unknown factors, which may include environmental conditions, loading procedures, or 
vandalism 

The bar chart of Figure 3.2 summarizes the annual number of railroad accidents reported by 
cause. The temporal trend shows that, on average, railroads have been consistently involved in 
more than 2,500 accidents each year. 
 

 
Figure 3.2  Frequency of railroad accidents by type and year, and industry cost 

Each year, the number of human errors dominated accident causes, and they consistently 
approached 1,000 accidents. Track and roadbed problems were consistently the next dominant 
category of causes, followed by mechanical and equipment failures. Signal failures accounted for 
the fewest accidents each year. The FRA categorized accidents that did not fit into one of the 
known categories as miscellaneous. Overall, the trend in the number of accidents by accident 
cause has been consistent. Therefore, the number of accidents and their causes are likely to 
remain similar each year if the industry does nothing different to mitigate accident risk. 

3.2.2 Types of Railroad Accidents 

Different from causes, the FRA defined four categories of accident types. The categories are 
collisions, derailments, obstructions, and fire. Figure 3.3 is a visual summary of the four 
categories of FRA-defined accident types. Figure 3.4 summarizes the frequency of railroad 
accidents by type and year.  
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Figure 3.3  Accident types are a) Collisions, b) Fire, c) Derailments and d) Obstructions 

Image Credit: a) (NBC Universal, 2017), b) (ABC News, 2016), c) (iStockphoto, 2021) d) (Wordsworth, 2020). 

 
Figure 3.4  Railroad accident frequency by type and year 

The FRA further subdivided the collision type accidents into the four categories of side, rake, 
front, and rail-grade crossing (RGC) collisions. Side collisions occur when one piece of 
equipment hits the side of another while moving in an orthogonal or angular direction. In 
contrast, rake collisions occur when one piece of equipment grazes the side of another while 
moving in the same or opposite direction. Front collisions occur when equipment rams into 
something while moving in the forward direction. Common accidents that resulted in fire were 
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due to sparks and combustion created by oil or hazardous materials. The FRA also maintains a 
separate database of accidents involving RGCs. 

The accident trend indicates that railroads are consistently incurring more than 1,500 derailment 
type accidents each year. Derailment type accidents consistently account for more than 60% of 
the annual accidents. Hence, solutions that can predict derailments will likely reward railroads 
with a larger return on their investment (Ghofrani, He, Goverde, & Liu, 2018). 

3.2.3 Cost of Railroad Accidents 

Figure 3.5 summarizes the proportion of accidents by cause each year. The line chart shows the 
trend in total monetary loss for the railroad industry. The cells at the bottom of Figure 3.5 break 
down the financial loss for each year by accident cause, and are shown in million-dollar units. 
 

 
Figure 3.5  Accident cause proportion by year and monetary loss 

Overall, the trend in the number of accidents by accident cause has been consistent. On average, 
accidents due to human factors, track and roadbed problems, and mechanical failures account for 
81% of the accidents. The top two accident causes (human factors and track/roadbed problems) 
account for more than half of all accidents. These results justify the focus on evaluating 
technology deployments that can help to reduce the risk of those accident causes. 

The amount of monetary loss is generally proportional to the size of the railroad. Figure 3.6 
summarizes the monetary loss by year for the top five Class I railroads in North America. The 
EDA results show that the largest (BNSF) and the second largest (UP) railroads together 
accounted for more than half of the industry’s monetary loss from accidents. 
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Figure 3.6  Monetary loss by year for the top five railroads in North America 

3.3 Risk Factors of Railroad Accidents 

Uncovering the risk factors associated with different railroad accident types and causes will help 
to focus on potentially high-impact technology applications that can minimize those risks. This 
section highlights how the AI methods of ML can build models to represent accident data and 
thereby reveal risk factors that are statistically significant. Section 3.1.1 discusses ML modeling 
that ranked factors associated with derailments, which are the dominant accident type. Section 
3.3.2 discusses ML modeling that ranked factors associated with human-caused railroad 
accidents, which is the dominant accident cause. Section 3.3.3 discusses ML regression methods 
that ranked factors associated with financial losses from railroad accidents. 

3.3.1 Factors in Derailment Type Accidents 

This section describes the application of ML to rank features associated with derailment type 
accidents. Table 3.4 summarizes the unsupervised ML methods used, including references to 
their detailed theory of operations. All methods used normalized values for the attributes so their 
magnitudes could be comparable. Each method has strengths and weaknesses; hence, their 
rankings cannot be identical. However, when used together, some methods tended to compensate 
for the weaknesses of others (Wang, Khoshgoftaar, & Gao, 2010). 
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Table 3.4  Feature Ranking by Scoring Methods 
Method Description Reference 
ANOVA Analysis of variance (ANOVA) measures the difference between 

average values of a feature in different classes of the target, based on the 
F distribution. 

Agresti (2018) (Agresti, 
2018) 

Chi-Squared Measures a dependency or association between the feature and the 
target class by using a chi-square statistic. 

Wang et al. (2010) 
(Wang, Khoshgoftaar, 
& Gao, 2010) 

Information 
Gain 

The expected amount of entropy reduction. A decrease in entropy 
(uncertainty) based on the presence of other features will increase 
information. 

Yu and Liu (2003) (Yu 
& Liu, 2003) 

Gain Ratio Reduces the bias of Information Gain toward features that have many 
values by taking the ratio of Information Gain to the intrinsic 
information (entropy) of the feature. 

Quinlan (1986) 
(Quinlan, 1986) 

Gini 
Decrease 

A measure of the inequality among values of a frequency distribution 
based on their statistical dispersion. A value of zero and one represents 
perfect equality and inequality, respectively, of the distribution of a 
feature within each target class. 

Han et al. (2016) (Han, 
Guo, & Yu, 2016) 

 
Table 3.5 summarizes the ranking by each method for the top 30 features. All methods agree that 
track class (TRK_CL), signalized movement authority (MOVEx = Signal), speed excess, and 
signalized territory (SIG) are the most important features for distinguishing derailment from non-
derailment type accidents. Table 3.6 lists the pairwise correlation of the rankings. The correlation 
coefficients ranged from 84.2% for the Gini and Chi-squared methods to 94.5% for the ANOVA 
and Chi-squared methods. The strong correlation is an indication that the methods generally 
agreed on the rank ordering, especially for the top 10 ranked attributes. 

Figure 3.7 shows the probability distribution of the two accident types (derailment and non-
derailment) for some of the highest-ranking features. Figure 3.7a and Figure 3.7b show the 
probability distribution and histogram, respectively, for the “track class” variable. Figure 3.7c 
and Figure 3.7d show the probability distribution for the “movement authorization” and 
“signalized territory” variables, respectively. The results indicate that although models can use 
those top variables to distinguish between derailment and non-derailment type accidents, the 
overlap in their distributions can lead to uncertainties. It is noteworthy that the distinction would 
be more statistically significant for Class I tracks because they have the highest frequency of 
accidents. Similarly, there is more distinguishability between the two accident types for non-
signalized territories and when movements are within restricted limits. 

Figure 3.8 is a box plot of the excess speed, categorized by the accident type. The results of the 
analysis indicate that accidents tend to be associated with speeds that are lower than the speed 
limits of the track classes where they occurred. However, there is a difference in both the mean 
and standard deviation (STD) of the speed limit for the two accident types. A student t-test 
indicated that the mean difference of 10 mph (16 kph) is statistically significant, based on a p-
value of nearly zero. That is, derailment type accidents tend to be associated with speeds that are 
closer to the speed limit and with higher certainty than those of non-derailment type accidents. 
The box plot shows the mean and STD with solid vertical and horizontal lines, respectively. The 
line that extends to the x-axis indicates the median values. The solid box visualizes the range of 
values spanning from the first to the third quartiles. 
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The finding that derailments are more strongly associated with lower track classes makes sense 
because railroads classify those tracks as higher risk and, thus, lowered their speed limit. 
Similarly, the stronger association of derailments with non-signalized territories and restricted 
limits of movement authorizations also align with their higher risk association. 

Table 3.5  Feature Importance Ranking 
Feature ANOVA χ2 Info. Gain Gain Ratio Gini 
TRK_CL 1 2 4 3 2 
MOVEx=Signal 2 3 3 1 4 
SPD_OVR 3 1 7 11 3 
SIG 4 4 5 2 5 
HUMANS 5 7 6 10 6 
TRK_TYP=Main 6 5 9 6 7 
CWR 7 6 1 8 8 
MOVEx=Not Main 8 11 11 9 11 
LOCOS 9 9 10 12 9 
CONSIST=Cars 10 8 14 4 12 
TRK_TYP=Industry 11 10 12 7 14 
TRK_TYP=Yard 12 16 2 18 16 
TONS_LG 13 14 15 20 17 
CARS_LD 14 18 13 19 13 
CONSIST=Yard 15 15 18 17 19 
N_CARS 16 12 28 16 10 
MOVEx=Restrict 17 17 26 15 20 
LAT 18 20 22 32 22 
TEMP 19 22 24 30 21 
TRK_TYP=Siding 20 21 25 13 24 
VISION=Dark 21 24 21 24 25 
CLASS_RR 22 13 30 14 15 
TRK_DEN_LG 23 19 20 22 18 
REGION=7.0 24 23 19 21 26 
VISION=Day 25 31 29 35 27 
REGION=8.0 26 26 27 23 28 
REGION=6.0 27 27 23 28 29 
REGION=2.0 28 28 33 25 30 
TRNSPD_LG 29 25 37 5 1 
REGION=3.0 30 29 31 31 31 

 
Table 3.6  Correlation of Ranking Methods 

Method A Method B Correlation 
ANOVA Chi-Squared 0.945 
ANOVA Info. Gain 0.897 
Gain Ratio Gini 0.843 
Gini Chi-Squared 0.842 
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Figure 3.7  Class probability for the top two and fourth ranking attributes 

Source: (Bridgelall & Tolliver, 2021) 
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Figure 3.8  Distribution and statistics for excess speed 

Source: (Bridgelall & Tolliver, 2021) 

3.3.2 Factors in Human-Caused Accidents 

Data mining the FRA equipment accident database showed that human error caused more than 
35% of the accidents that occurred from 2009 to 2019 (Figure 3.9). 
 

 
Figure 3.9  Accident cause a) frequency and b) proportion 
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Figure 3.9 shows that after human-caused accidents, the next dominant category was track and 
roadbed problems, which accounted for 23% of the accidents. Figure 3.9a and Figure 3.9b 
summarize the accident causes by frequency and proportion, respectively. The patterns indicate 
that derailment type accidents, which were dominant, accounted for approximately half of the 
human-caused accidents, but they accounted for nearly all the accidents due to track and roadbed 
problems.  

The statistical association between derailment type and human-caused accidents is not easy to 
see in the bi-factor distribution charts because all accident causes were associated with some 
proportion of derailments. A classification ML model representation of the data provided further 
insights by ranking the features based on their contribution toward correctly predicting the target 
class of derailment from non-derailment type accidents. Each type of classification model has 
advantages and disadvantages. The best performing model depends on the nature of the dataset 
and the target variable. Table 3.7 summarizes the ML models built to represent the accident data 
and to provide insights. The table summarizes the theory of operations, the main 
hyperparameters tuned, and their key advantages and disadvantages. This research used four 
broad types of models, which included 11 different classification ML models of data 
representation. 
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Table 3.7  ML Models Built to Represent the Accident Data 
Type Model Algorithm & Hyperparameters Advantages and Disadvantages 

T
re

e-
B

as
ed

 M
et

ho
ds

 

Decision 
Tree (DT) 

Recursive tree node splitting to maximize 
the purity of sub-trees. HP: Minimum 
number of instances in leaves (N), and 
minimum size of subsets (S). 

A: Simple to interpret and to visualize. Works with 
non-numerical categorical attributes. D: Tends to 
overfit, resulting in low predictive power on new data. 

Random 
Forest 
(RF) 

Build many full trees for voting. Each tree 
grows from a bootstrapped dataset and a 
random subset of attributes. HP: Number of 
trees (N) and minimum size of subsets (S). 

A: Offers the simplicity and intuition of decision trees 
but with less tendency to overfit, therefore, improves 
generalization on unseen data. D: Incomplete trees 
diminish insights that full trees might otherwise 
provide. 

AdaBoost 
(AB) 

Sequentially build improved shallow trees 
for voting. HP: Number of estimators (N), 
learning rate (R), boosting algorithm, and 
regression loss function. 

A: Selects only those features that improve predictive 
power, hence, reducing the computational burden for 
datasets with very large dimensionality. Less sensitive 
to overfitting. D: Sensitive to the presence of outliers 
and data with high incoherence. 

Extreme 
Gradient 
Boost 
(XGB) 

A highly configurable version of gradient 
boosting. HP: Number of estimators (N), 
learning rate (R), maximum tree depth (S), 
loss function. 

A: Improved performance over gradient boosting and 
more efficient. D: Sensitive to hyperparameter 
selection; requires manual intervention to achieve the 
best configuration for a given dataset. 

Gradient 
Boost 
(GB) 

Sequentially build improved models that fit 
the errors of previous models. HP: Number 
of estimators (N), learning rate (R), 
maximum tree depth (S), loss function. 

A: Efficient and good performance on large datasets; 
inherently supports missing values. D: Sensitive to 
hyperparameter selection but has fewer to tune than 
extreme gradient boosting. 

St
at

is
tic

al
 M

od
el

s k-Nearest 
Neighbors 
(k-NN) 

Determine the class of an instance based on 
the majority class of its k nearest neighbors. 
HP: Number of neighbors (k), distance 
method. 

A: Method simplicity. D: Sensitive to a skewed class 
distribution. The computational intensity grows 
exponentially with the number of instances and 
attributes. 

Naïve 
Bayes 
(NB) 

Applies Bayes theorem to determine the 
class probability, given probabilities of the 
observations. HP: None 

A: Fast and simple method. D: Poor performance when 
attributes are not independent. 

D
ec

is
io

n 
B

ou
nd

ar
ie

s Logistic 
Regression 
(LR) 

Establish a decision boundary by using a 
logistic function to maximally separate 
classes. HP: Regularization function and 
strength (C), and probability threshold. 

A: Inherits many of the advantages of linear regression; 
precisions are easy to make. D: Sensitive to noise in the 
data such as outliers and incorrectly classified 
instances. Model fitting may fail to converge if there 
are many highly correlated features. 

Support 
Vector 
Machine 
(SVM) 

Establish a decision boundary by finding a 
multidimensional hyperplane to maximally 
separate classes. HP: Kernel type, cost (C), 
and regression loss (ε) 

A: High accuracy with low computational complexity. 
D: Sensitive to noisy data and multidimensional planes 
that lack clear boundaries. 

L
ea

rn
ed

 F
un

ct
io

ns
 Stochastic 

Gradient 
Descent 
(SGD) 

An optimization technique that fits a linear 
multivariate function to the data. It works 
best when all features are scaled. HP: Loss 
function, learning rate method and 
parameters. 

A: An efficient technique on large datasets. 
D: Sensitive to feature scaling; many hyperparameters; 
and the true minima may not be achieved because the 
gradient is only an approximation. 

Artificial 
Neural 
Network 
(ANN) 

A weighted multilayer linear network that 
represents a function. HP: Hidden layer 
neurons (N), solver type, regularization 
parameter (α), number of iterations (I). 

A: Accuracy improves with use and feedback about 
classification accuracy. D: Requires many training 
examples to improve classification accuracy. 

 
Feature ranking followed building all the ML models and selecting the best performing one, 
which was the extreme gradient boosting (XGB) algorithm. Figure 3.10 illustrates the results of 
feature ranking using the XGB algorithm. 
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Figure 3.10  Factors that impact the prediction of human-caused railroad accidents 

 
The Shapely (SHAP) value is a measure of how much a feature impacts the model’s predictive 
performance (Štrumbelj & Kononenko, 2014). In this case, the predictive performance was the 
model’s ability to distinguish between derailment and non-derailment type accidents. The SHAP 
value is 
 

𝜙𝜙𝑖𝑖 = �
|𝑆𝑆|! (|𝑁𝑁| − |𝑆𝑆| − 1)!

|𝑁𝑁|!
𝑆𝑆⊆𝑁𝑁\{𝑖𝑖}

[𝑣𝑣(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑣𝑣(𝑆𝑆)] (1) 

where |S| is the number of non-zero features from a subset of N features and v(S) is the 
proportion of their collective contribution toward a prediction. Hence, the marginal contribution 
of feature {i} is 𝑣𝑣(𝑆𝑆 ∪ {𝑖𝑖}) − 𝑣𝑣(𝑆𝑆). 

Positive and negative impacts are SHAP values greater than or less than zero, respectively. The 
chart ordered the features by their global SHAP value on the vertical axis. The local SHAP value 
is the proportional impact of that feature for a given data instance. Each dot in the chart 
represents a data instance where the color code is its value relative to the mean value for that 
feature. The chart stacks dots within impact bins. Therefore, a thicker portion of a blob indicates 
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that more data instances have that SHAP impact value than a value at a thinner portion of the 
blob.  

A general rule of thumb for interpreting the chart is that it lists factors in the order of their global 
SHAP influence on the predicted outcome. The factor at the top of the chart ranks highest in 
influence. The relative amount of extension to the left or right of the zero vertical axis indicates 
the relative local influence of that factor on the predicted outcome. Values that extend to the 
right and left are associated with positive and negative predicted outcomes, respectively. The 
values associated with positive or negative influences are color coded on a continuous scale from 
zero to one with a mean value of 0.5. 

The results indicate that, statistically, derailment type accidents are generally not associated with 
human-caused accidents because a low value for the binary feature “derailment” is associated 
with a positive impact and vice versa. This finding suggests that systems designed to identify 
derailment risks can complement those designed to prevent accidents due to human error. 
Another result of the SHAP analysis was that yard tracks are generally associated with human-
caused accidents because mostly high values of the binary feature “Yard Track?” are associated 
with positive impacts. Similarly, mostly unloaded cars are associated with human-caused 
accidents. 

3.3.3 Factors in Monetary Losses from Railroad Accidents 

This section summarizes the analysis of 15 years of railroad accident data from 2003-2017 to 
produce insights about the major factors associated with financial losses from accidents. The first 
step was to represent the data with several different types of ML regression models and then to 
select the model that provided the least error in predicting financial loss. Subsequently, 
regression with the best predictive model revealed the ranking of factors based on their influence 
on the prediction accuracy for financial loss. 

The models selected were based on their past performance on non-linear and highly imbalanced 
datasets. The regression models were random forest (RF), K-nearest neighbor (KNN), support 
vector machines (SVM), stochastic gradient boosting (SGB), extreme gradient boosting (XGB), 
and stepwise linear regression (SLR). Model training used cross-validation with 10 folds and 
three repeats to improve their generalization. Table 3.8 summarizes the theory of operations and 
the advantages and disadvantages of the regression ML models compared. 

The performance metrics evaluated were the root-mean-squared error (RMSE), mean absolute 
error (MAE), and R-squared. R-squared represents the proportion of variability in the dependent 
variable explained by the variability in the set of independent variables. Hence, higher R-squared 
values are associated with better performing models. MAE reflects the average magnitude of the 
absolute error. Hence, a lower MAE value is associated with a better performing model. RMSE 
is the square root of the mean squared differences between predicted and actual values. If the 
error distribution is symmetric, then the RMSE is a more reliable metric than the MAE 
(Aggarwal, 2015). 

To simplify the modeling, preliminary regression analysis revealed those variables that did not 
contribute to the prediction accuracy of monetary loss, so the workflow dropped those. Table 3.9 
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lists the final set of features used to build the regression model. The dependent variable was the 
accident damage (ACCDMG) amount in dollars. 

Table 3.8  ML Regression Methods Compared 
Method Theory of Operation Advantages (A) and Disadvantages 

(D) 
k-Nearest 
Neighbor 
(KNN) 

The predicted value is based on the average output of the 
k most similar instances within the entire dataset. The 
measure of similarity is often the Euclidean distance 
based on all the features. 

A: no explicit training required. D: 
computationally intensive because of 
the repeated comparisons. 
 

Random 
Forest (RF) 

Bootstrapping and aggregation (bagging) is a 
fundamental operation of the RF method (Breiman, 
Bagging predictors, 1996). The algorithm builds an 
ensemble of trees by randomly sampling the same dataset 
with replacement. The trees are diverse because the 
algorithm uses a random subset of features for splitting 
each node. Unlike the boosting method that grows 
successive trees to reduce the errors made by previous 
trees, the trees grown by RF grow independently 
(Breiman, Random Forests, 2001). The predicted result is 
based on the majority vote of the ensemble. 

A: robust against overfitting because 
of tree diversity and majority voting. 
D: harnessing the power of 
randomness and voting works best 
with large balanced datasets. 

Stochastic 
Gradient 
Boosting 
(SGB) 

Boosting combines the predictions of many weak learners 
in an ensemble (Schapire & Singer, 1998). Gradient 
boosting fits successive trees to the residuals of the 
previous trees in a manner that minimizes the residuals 
with each iteration. In this formulation, the gradient is the 
residual. The stochastic part is based on randomness 
incorporated into the boosting algorithm, such as 
randomly sampling the data to build trees (Friedman, 
2002). The predicted value is a weighted sum of the 
individual weak learners. 

A: Diversity of weak learners helps 
to prevent the overfitting tendencies 
of full decision trees. D: small 
datasets may not support the leverage 
of randomness and boosting. 

Extreme 
Gradient 
Boosting 
(XGB) 

The extreme in XGB refers to an extension of SGB that 
imposes additional controls to minimize tendencies 
toward overfitting (Mousa, Bakhit, Osman, & Ishak, 
2018).  

A: The algorithm was demonstrated 
to perform well in applications with 
noisy datasets (Chen & He, 2014). D: 
many hyperparameters to tune. 

Support 
Vector 
Machine 
(SVM) 

The algorithm seeks a decision boundary in 
multidimensional feature space that maximally separates 
the data (Mountrakis, Im, & Ogole, 2011). 

A: tends to generalize well with 
limited training samples. D: high 
sensitivity to noisy datasets that lack 
clean feature space boundaries 
among the targets. 

Stepwise 
Linear 
Regression 
(SLR) 

Regresses multiple variables in many stages by 
successively adding and removing predictor variables in a 
linear regression to maximize predictive performance. 

A: can reduce the feature set size. D: 
computationally intensive. 

 
Table 3.10 summarizes the performance metric for each regression model. The XGB method 
provided the best predictive performance based on both the RMSE and R-squared metrics. The 
XGB model then explained the importance of each independent variable based on three metrics. 
The gain percentage was the relative amount of information gained by splitting the decision tree 
on that variable. Hence, relative variable importance was proportional to the gain percentage. 
Cover was an indicator of the relative number of observations associated with that variable 
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during the model building. Frequency was the proportional number of times that the model used 
that variable to generate trees. 

 Table 3.11 summarizes the feature importance ranking and Figure 3.11 provides a visualization 
based on the gain percentage. The results indicate that train weight (TONS) followed by train 
speed (TRNSPD) and track density (TRKDNSTY) are the principal factors associated with 
monetary loss. This result makes sense because accidents involving trains that carry more freight 
(value), travel faster (throughput), and use tracks with higher traffic (capacity) are most likely to 
result in higher financial losses. 

Figure 3.12 shows the marginal effect of each variable on monetary loss for a range of values. 
The “yhat” variable is the monetary loss predicted for a range of values of the indicated 
independent variable while the XGB regression model maintains the values of the other variables 
at their mean value. Hence, the plots revealed the values of each independent variable where the 
monetary loss peaked. The results indicate that train weight and speed at approximately 20,000 
tons and 105 mph, respectively, were associated with peak financial losses. Longer trains of 120-
130 cars were also associated with peak financial losses; this finding agrees with the findings of 
other studies (Ii & Barkan, 2008). 

Table 3.9  Variables of the Regression Models 
Variable Label Description 
IMO Month Month of incident 
TIMEHR Time of incident Time of the incident in military format 
CARS Number of cars Total number of cars carrying hazmat 
TEMP Temperature  In degrees Fahrenheit 
TRNSPD Speed of train  In miles per hour 
TONS Gross tonnage The weight carried, excluding power units 
TRKCLAS FRA track class Track class from 1 to 9, X 
TRKDNSTY Annual track density  Gross tonnage in millions 
ACCDMG Financial damage  Total reportable damage in dollars (dependent variable) 
Precipitation  Weather condition 1 if conditions were either rainy, sleety, or snowy, 0 otherwise 
Fog  Weather condition 1 if conditions were foggy, 0 otherwise 

 
Table 3.10  Model Performance Evaluation 

  MAE RMSE R-Squared 
SGB 145,198.96 619,746.97 0.07 
KNN 152,738.79 681,613.91 0.02 
SVM 131,923.65 627,625.37 0.06 
RF 143,636.45 610,262.40 0.12 
XGB 132,698.43 606,608.90 0.13 
SLR 153,611.97 621,920.75 0.06 
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Table 3.11 Feature Importance Ranking 
Feature Gain (%) Cover Frequency 
TONS 0.5536 0.2618 0.4114 
TRNSPD 0.2750 0.4069 0.2477 
TRKDNSTY 0.0515 0.1816 0.1103 
IMO11 0.0506 0.0034 0.0383 
TIMEHR 0.0477 0.0158 0.0657 
CARS 0.0065 0.0112 0.0303 
TRKCLAS4 0.0050 0.0892 0.0563 
IMO9 0.0043 0.0000 0.0003 
IMO5 0.0041 0.0039 0.0177 
TRKCLAS7 0.0011 0.0253 0.0140 
TEMP 0.0006 0.0009 0.0080 

 
 

 
Figure 3.11  Feature importance ranking in monetary loss 

Source: (Dhingra, Bridgelall, Lu, Szmerekovsky, & Bhardwaj, 2019) 
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Figure 3.12  Marginal effect of factors in financial losses 

Source: (Dhingra, Bridgelall, Lu, Szmerekovsky, & Bhardwaj, 2019) 

The marginal effect showed that higher track classes were associated with peak financial losses, 
which agreed with other findings that crash risk increased with track class because the speed 
limit increases with track class (Liu, Barkan, & Saat, 2011). The model also suggested two 
temporal factors that influenced financial losses. The first was that financial loss tended to peak 
between 11 PM and 5 AM, which appears to correlate with other findings that fatigue (Filtness & 
Naweed, 2017) and lack of sleep (Naweed, Rainbird, & Chapman, 2015) were primary accident 
causes. The second factor was that financial losses tended to peak in the warmer months, which 
correlates with peaks in traffic due to harvest shipping and favorable track conditions. 

3.3.4 Endnote 

The following publications from this project provide more in-depth analytical details and 
theoretical expansions of the matter reported in this section: 
 
Journal Article 

1. Bridgelall, R., & Tolliver, D. (2021). “Railroad Accident Analysis Using Extreme 
Gradient Boosting.” Accident Analysis and Prevention, 156(2021). DOI: 
10.1016/j.aap.2021.106126, 2021(106126). 
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Conference Proceedings 
1. Dhingra, N., Bridgelall, R., Lu, P., Szmerekovsky, J., & Bhardwaj, B. (2020). “Ranking 

Risk Factors in Financial Losses from Railroad Incidents: A Machine Learning 
Approach.” In 61st Annual Transportation Research Forum. 

2. Dhingra, N., Bridgelall, R., Lu, P., Szmerekovsky, J., & Bhardwaj, B. (2019). “Using 
Data Mining Methods to Rank the Importance of Factors in Railroad Accidents.” In 
Proceedings of the 98th Annual Meeting of the Transportation Research Board. 19-
01768, http://amonline.trb.org/ 

3. Dhingra, N., Bridgelall, R., Lu, P., & Bhardwaj, B. (2019, October). “Text Mining 
Railroad Accident Narratives for Identifying Contributors to Railroad Accidents and to 
Extend the Sustainability of Fixed Field Data.” INFORMS Annual Conference, Seattle, 
Washington. 

3.4 Railroad Accident Prevention Technologies 

The next two subsections discuss technologies designed to minimize the risk of the two dominant 
accident causes. Section 3.4.1 discusses PTC, which is designed to help prevent accidents due to 
human-error. Section 3.4.2 discusses evolving onboard track condition monitoring technologies, 
which aim to help prevent accidents due to track and roadbed problems. 

3.4.1 PTC to Prevent Human-caused Accidents 

PTC is a sensing and communication network designed to help prevent accidents caused by 
human error (GAO, 2010). The PTC system can sense and communicate the location, speed 
restrictions, and moving authority of trains. Therefore, the system should be able to prevent train 
collisions, derailments due to speeding or incorrect switch lining, and movements into 
unauthorized territories (Badugu & Movva, 2013). In theory, the system can take over and stop a 
train if the operator fails in their responsibilities (FRA, 2018). An analysis by the Government 
Accountability Office (GAO) in 2010 suggested that a PTC deployment could have prevented 
49% of the accidents that occurred between 2000 and 2009. 

The Rail Safety Improvement Act of 2008 (RSIA08) mandated PTC deployments for the major 
freight and passenger railroads in North America. The RSIA08 mandated the following 
installments: 

1. Class I lines and those lines used to transport poisonous- or toxic-by-inhalation 
(PIH/TIH) materials 

2. The main lines of any railroad that operates regularly scheduled intercity passenger or 
commuter rail 

The above requirements resulted in an installation scope of 41 railroads consisting of seven Class 
I freight railroads, 30 commuter and intercity passenger railroads (Amtrak included), and four 
short line and terminal railroads (FRA, 2018). The FRA determined that the scope of deployment 
covered approximately 60,000 route miles of the 140,000-mile railroad network, and 20,000 
locomotives. The federal mandate required the completion of PTC implementations by 2015, but 
the deadline had to be extended several times to accommodate deployment and interoperability 
issues (AAR, 2018). The first extension was to 2018 and the second was to 2020. The FRA had 
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initially approved and certified 10 different types of PTC systems during the first extended 
implementation deadline year (FRA, 2018). However, only one of the seven U.S. Class I 
railroads achieved interoperability with some of their tenant railroad PTC deployments by that 
time (FRA, 2018). Yet, by the end of that year, only 29% of their tenant railroads achieved 
interoperability. 

Figure 3.13 shows the implementation architecture of a typical PTC deployment (Bridgelall, 
King, Huang, Tolliver, & Lu, 2019).  

 
Figure 3.13  A typical PTC implementation architecture 

Source: (Bridgelall, King, Huang, Tolliver, & Lu, 2019) 

Figure 3.14 illustrates the architecture selected by BNSF Railway. The locomotive contains 
onboard computers to track the train and manage its speed. The wayside devices can monitor 
signals, detect switch positions, and track the condition of other systems. Wayside devices use 
radio towers to communicate with the train and the central office to authorize train movements. 
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Figure 3.14  PTC system architecture by BNSF 

Image Source: (Stagl, 2016) 

The central office has computers and dispatching systems that respond to information from the 
train, wayside systems, and personnel. A typical PTC system has more than 20 technology 
components, each of which can fail for a variety of reasons. 

The proprietary nature of initial PTC implementations and the rush to comply with the federal 
mandate resulted in a scarcity of data about the actual deployment costs. The lack of standards 
for PTC deployments also resulted in widely varying cost estimates. An FRA commissioned 
study in 2009 estimated that the PTC implementation over 20 years could cost between $10 
billion and $13.8 billion (Roskind, 2009). A revised analysis by Peabody & Associates, Inc., in 
2010 included other direct, indirect, and societal costs, which increased the estimate to $15.2 
billion (L. E. Peabody & Associates, Inc., 2010). An estimate by a Canadian working group on 
rail safety found that average cost would be $192,000 per route mile (ACRS, 2016), or 
approximately $11.5 billion for the U.S. network. The USDOT estimated in 2018 that, excluding 
the Class I railroads, 37 other railroads would spend $4.2 billion to implement PTC (DeWeese, 
2018). This brought the overall estimate to $15.7 billion (11.5 + 4.2), which agreed with the 
Peabody & Associates estimate. There were a few estimates of PTC maintenance costs. The 
FRA-commissioned study estimated that the annual maintenance cost would be approximately 
$860 million (Roskind, 2009). The American Public Transportation Association (APTA) 
estimated that the annual operating and maintenance costs for commuter railroads would be $100 
million (DeWeese, 2018). 

A limitation of PTC is that the system cannot prevent all types of accidents such as those 
involving rail-grade crossings and trespassers (Lobb, 2006). A report by the Congressional 
Research Service (CRS) found that those accidents PTC could prevent caused relatively few 
fatalities (Peters & Frittelli, 2018). However, the National Transportation Safety Board (NTSB) 
testified that PTC could have prevented 300 deaths between 1969 and 2018 (Sumwalt (III), 
2018). The deployment of PTC also presents new cybersecurity challenges and risks of system 
failures (Zhang, Liu, & Holt, 2018). 
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3.4.2 Onboard Sensors to Detect Track and Roadbed Problems 

This project created a generalized system architecture for connected trains called Railway 
Autonomous Inspection Localization System (RAILS). Figure 3.15 illustrates the concept of 
connected trains that carry sensors to detect and report potential track and roadbed problems 
(Bhardwaj, Bridgelall, Lu, Nygard, & Dhingra, 2020). The system suggests that low-cost energy 
harvesting sensors that contain accelerometers, gyroscopes, and GPS receivers can log and report 
the multidimensional motions of locomotives and railroad cars. The energy-harvesting sensor 
package (EHP) would contain low-cost sensors that are common in all smartphones. The EHP 
devices would include a micro-electro-mechanical (MEM) device that implements the 
accelerometers and gyroscopes, a global positioning system receiver, wireless communications 
such as Wi-Fi, Bluetooth, and RFID, and a microprocessor. The EHP would communicate the 
raw signal samples to a cloud-based system that would apply signal processing and artificial 
intelligence methods to detect and localize track irregularities. 

Figure 3.16 illustrates the three types of movements that the EHP can detect to predict the type 
and severity of track and roadbed problems. Profile irregularities are vertical deviations from a 
flat surface. Alignment irregularities are lateral deviations from a straight line. Warp 
irregularities are uneven vertical displacements between the two rails that can cause rocking 
motion and lead to derailments. 
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Figure 3.15  System architecture for connected trains 

 

 
Figure 3.16  Movement detections due to track and roadbed problems 
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Figure 3.17 suggests how practitioners could integrate the onboard EHP within the existing PTC 
system to leverage the communication network and cloud-based platform. For instance, using the 
same communication pathways, locomotives can add accelerometer, gyroscope, GPS position, 
and speed data from the EHP. 

The BCA incorporates the first-pass detection rate, P1, of any sensor-based system considered. 
P1 encapsulates the sensitivity and selectivity characteristics of any sensor-based system. Figure 
3.18 illustrates how P1 relates to the system’s ability to distinguish signal from noise. Figure 
3.18a shows a first scenario for the distribution of signal and noise amplitudes and Figure 3.18b 
shows a second scenario. The error can be a false positive (FP) or a false negative (FN). An FP 
error is the erroneous detection of a signal; whereas, an FN error is a missed detection of a 
signal. The likelihood of an FP error is the area under the intersection of the red (noise) and blue 
(signal) curves, relative to the remaining area under the red curve. The likelihood of an FN error 
is the area under the intersection of the red and blue curves, relative to the remaining area under 
the blue curve. P1 is the area under the blue curve above the a1 threshold. The first scenario 
shows that the signal amplitude is generally higher and more consistent than the noise amplitude, 
but there is still some overlap. Therefore, setting a threshold at a1 will result in detecting signals 
without FP or FN errors half of the time. So P1 = 0.50 in the first scenario. The second scenario 
shows much more overlap between the signal and noise distributions. Therefore, both the FP and 
FN rates will be higher; whereas, the P1 rate (without FP or FN errors) will be lower. Reducing 
the threshold level to a2 will increase the P1 rate but at the expense of higher FP and FN rates. 
Figure 3.19 plots the probability of detection as a function of P1 for three scenarios of scan 
frequency. 
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Figure 3.17  Integrating connected trains with the PTC system 
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Figure 3.18  Characteristics that determine the first pass probability of a signal detector 

 
 

 
Figure 3.19  Probability of detection as a function of P1 for three scan frequencies 

 
Figure 3.20 shows the typical flow of operations that onboard sensors must perform to take 
advantage of the increased probability of detecting track and roadbed problems with multiple 
passes of the sensors. 
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Figure 3.20  Theory of operations for onboard sensors 

The cost and size of a sensor increases with the number of operations performed to clean the data 
and apply intelligence to detect the signals. This complexity affects the first pass detection rate 
P1. For example, filtering the signal to reduce the noise can allow for a lowering of the signal 
detection threshold, which in turn will increase the P1 rate. 

As a case study, the Railroad Infrastructure & Vehicle Evaluation Technology (RIVET) system, 
shown in Figure 3.20, implements the onboard sensors and communications device by using a 
smartphone (Lu, Bridgelall, Tolliver, Chia, & Bhardwaj, 2019). The system then sends the data 
samples to a cloud-based platform for further processing. The cloud-based platform applies 
algorithms to sort, stitch, clean, parse, interpolate, truncate, align, and filter the data for accurate 
feature extraction and ensemble averaging. Another set of algorithms then localize peak inertial 
events to model the irregularities of the track and roadbed. Hence, the variable cost of the system 
is the onboard device; whereas, the fixed cost can be the software used on the cloud-based 
platform to localize and visualize problem areas across the railroad infrastructure. 

3.4.3 Endnote 

The following publications from this project provide more in-depth analytical details and 
theoretical expansions of the matter reported in this section: 
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Journal Articles 
1. Bhardwaj, B., Bridgelall, R., Lu, P., & Dhingra, N. (2021). “Signal Feature Extraction 

and Combination to Enhance the Detection and Localization of Railroad Track 
Irregularities.” IEEE Sensors, 21(5). DOI: 10.1109/JSEN.2020.3041652. 

2. Bhardwaj, B., Bridgelall, R., Chia, L., Lu, P., & Dhingra, N. (2020). “Signal Filter Cut-
off Frequency Determination to Enhance the Accuracy of Rail Track Irregularity 
Detection and Localization.” IEEE Sensors, 20(3). DOI: 10.1109/JSEN.2019.2947656, 
pp. 1393-1399. 

3. Bridgelall, R., Chia, L., Bhardwaj B., Lu, P., Tolliver, D., & Dhingra, N. (2019). 
“Enhancement of Signals from Connected Vehicles to Detect Roadway and Railway 
Anomalies.” Measurement Science and Technology. DOI: 10.1088/1361-6501/ab5b54. 

4. Chia, L., Bhardwaj, B., Lu, P., & Bridgelall, R. (2019). “Railroad Track Condition 
Monitoring Using Inertial Sensors and Digital Signal Processing: A Review.” IEEE 
Sensors Journal, 19(1). DOI: 10.1109/JSEN.2018.2875600, pp. 25-33. 

Conference Proceedings and Presentations 
1. Bridgelall, R., & Tolliver, D. (2020). “Will IoT Technology Deployments Prevent 

Railroad Accidents?” In Sensors Expo & Conference 2020. 
2. Bhardwaj, B., Bridgelall, R., Lu, P., Nygard, K., & Dhingra, N. (2020). “Architecture for 

an Intelligent Low-Cost Rail Track Condition Evaluation System.” In ASCE 
International Conference on Transportation & Development. DOI: 
10.1061/9780784483145.020. 

3. Bhardwaj, B., Bridgelall, R., Lu, P., & Dhingra, N. (2020, January). “Signal Feature 
Extraction and Combination to Enhance the Detection and Localization of Railroad Track 
Irregularities.” The 99th Annual Meeting of the Transportation Research Board, 
Washington, D.C. 

4. Chia, L., Lu, P., Bhardwaj B., Bridgelall, R., Tolliver, D., & Dhingra, N. (2019). 
“Automatic Rail Track Surface Anomaly Detection with Smartphone Based Monitoring 
System.” In DEStech Transactions on Engineering and Technology Research, pp. 168-
172. DOI: 10.12783/dtetr/icicr2019/30565. 

5. Bhavana, B., Bridgelall, R., Lu, P., & Dhingra, N. (2019, April). “Railroad Track 
Irregularities: Position Accuracy Assessments Using Low-Cost Sensors on a Hi-Rail 
Vehicle.” The 3rd Graduate Student Council (GSC) Annual Research Symposium, Fargo, 
ND. 

6. Bhavana, B., Bridgelall, R., Lu, P., & Dhingra, N. (2019). “Railroad Track Irregularities: 
Position Accuracy Assessments Using Low-Cost Sensors on a Hi-Rail Vehicle.” In 
Proceedings of the ASCE International Conference on Transportation & Development 
(ICTD 2019). DOI: 10.1061/9780784482575.043. 

7. Chia, L., Bhardwaj B., Bridgelall, R., Lu, P., Tolliver, D., & Dhingra, N. (2019). 
“Heuristic Methods of Inertial Signal Alignment to Detect and Locate Railtrack 
Anomalies.” In Proceedings of the 98th Annual Meeting of the Transportation Research 
Board. 19-00229, http://amonline.trb.org/ 

8. Chia, L., Bhardwaj B., Bridgelall, R., Lu, P., Tolliver, D., & Dhingra, N. (2019). “Train 
Speed Estimation Using Low-Cost GPS Sensors.” In Sensors and Smart Structures 
Technologies for Civil, Mechanical, and Aerospace Systems 2019. International Society 
for Optics and Photonics (SPIE). DOI: 10.1117/12.2507020. 

https://ieeexplore.ieee.org/document/9274397
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3.5 Benefit-Cost Analysis 

The next two subsections evaluate the benefits and costs of the deployed PTC system and a price 
budget model for onboard sensor systems as a function of a return on their investments. 

3.5.1 Benefit Cost Analysis of PTC 

As a result of the RSIA08 federal mandate, the Class I railroads collectively invested $11.2 
billion to comply with the federal law (GAO, 2010). Table 3.12 summarizes the amount that 
each Class I railroad reportedly spent on PTC deployments. This section analyzes the benefits 
from accident savings in proportion to the PTC deployment costs and as a function of the 
payback period. 

 
Table 3.12  Sources for the Class I Railroad Stated Deployment Costs 

Railroad Cost ($B) Source 
Union Pacific Railroad 2.900 Company webpage on PTC 

(Union Pacific Railroad, 2018) 
BNSF Railway 2.000 Company webpage on PTC 

(BNSF Railway, 2018) 
CSX Transportation 2.400 CRS 2018 Report 

(Peters & Frittelli, 2018) 
Norfolk Southern Railway 1.800 Company news webpage 

(Norfolk Southern Railway, 2017) 
Canadian National Railway 1.400 Company press release 

(Canadian National Railway, 2018) 
Kansas City Southern Railway 0.300 USDOT Report on Grant Distribution 

(DeWeese, 2018) 
Canadian Pacific Railway 0.375 Canadian Working Group Report 

(ACRS, 2016). 
 
Table 3.13 summarizes the monetary loss from PTC addressable (PTC-A) accidents for the five 
years prior to the first deadline year extension of 2018. The table shows that the coefficient of 
variation (CV) for the STD from the average number of accidents (AVG) was 5.8%, showing 
that the accident frequency was consistent. Therefore, the consistency justifies using an average 
value as the annual financial benefits in accident prevention. On average, PTC avoidable 
accidents accounted for 31.6% of the monetary loss from all accidents. Hence, if the PTC 
deployments were flawless, the average finance loss avoided (benefits) would have been 
approximately $92 million. 
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Table 3.13  Financial Losses from Human, Signaling, and Communication Errors 
Year Accidents PTC-A PTC-A (%) TFL ($) PTC-A FL ($) PTC-A FL (%) 
2013 1806 771 42.7  361,341,622   120,788,225  33.4 
2014 1836 789 43.0  296,289,876   86,366,068  29.1 
2015 1892 993 52.5  311,490,762   90,034,696  28.9 
2016 1650 679 41.2  253,430,453   96,279,982  38.0 
2017 1686 724 42.9  226,583,986   64,887,319  28.6 
AVG 1774 791.2 44.6  289,827,340   91,671,258  31.6 
STD 102.4 120.7 

 
 52,320,684   20,107,467    4.1 

CV (%) 5.8 15.3 
 

        
 

 
The cumulative discounted net benefit or the return on the investment (R) is 

𝑅𝑅 = �
𝐵𝐵𝑖𝑖 − 𝐶𝐶𝑖𝑖
(1 + 𝑟𝑟)𝑖𝑖

𝑌𝑌

𝑖𝑖=1

 (2) 

The variables are the discount rate r, the future year index i, and the number of years n for 
payback. The analysis uses 7% and 3% discount rates that the FRA suggests for payback and 
sensitivity assessments (FRA, 2016). The analysis also uses a 15% rate of the initial investment 
for annual operating and maintenance costs, Ci based on previous studies (Roskind, 2009). The 
maintenance rate includes replacement parts for failed sensor systems. Manufacturer analysis of 
the integrated accelerometer types of sensors suggested for onboard condition monitoring found 
that under normal operating conditions of temperature and humidity, there is a 10% chance of 
failure after 15 years (NXP, 2007). 

The following optimization problem solved for the net annual average benefits needed to 
achieve payback in Y years with a first investment of I: 

Minimize �
𝐵𝐵𝑖𝑖 − 𝐶𝐶𝑖𝑖
(1 + 𝑟𝑟)𝑖𝑖

𝑌𝑌

𝑖𝑖=1

− 𝐼𝐼 = 0 (3) 

Subject to 
𝐵𝐵𝑖𝑖
𝐼𝐼

> 0,∀𝑖𝑖 
(4) 

and 𝑌𝑌 = {1, 2, … ,20} (5) 

 
After computing the solution for Bi as a function of the payback period Y, solving a similar 
optimization problem yields the internal rate of return (IRR) r that satisfies 

�
𝐵𝐵𝑖𝑖 − 𝐶𝐶𝑖𝑖 − 𝐼𝐼

(1 + 𝑟𝑟)𝑖𝑖

𝑌𝑌

𝑖𝑖=1

= 0 (6) 
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The benefit-cost-ratio (BCR) for a 10-year period is then  
 

𝐵𝐵𝐶𝐶𝑅𝑅 = �
𝐵𝐵𝑖𝑖

(1 + 𝑟𝑟)𝑖𝑖

10

𝑖𝑖=1

𝐼𝐼�  (7) 

Table 3.14 lists the additional annual net benefits as a proportion of the aggregate PTC 
investment that Class I railroads would need to achieve the desired payback period. The net 
benefits are in addition to the benefit from accident avoidance due to the PTC system. The table 
also lists the IRR and 10-year BCR as a function of the desired payback period using both the 
3% and 7% discount rates. For example, at a 3% discount rate over 10 years, Class I railroads 
must collectively realize an added annual net benefit of 25.9% of the total PTC deployment cost 
for a return on their investment. The added net benefit that Class I railroads must realize 
increases to 28.4% when the discount rate is 7%. 

Table 3.14  Results of the Benefit Cost Analysis 
3% Discount   7% Discount 
Payback Additional Net  10Yr  Additional Net  10-Yr 
Years Benefits (%) IRR (%) BCR  Benefits (%) IRR (%) BCR 
1 117.2 103.0 8.79  121.2 107.0 7.52 
2 66.4 52.2 4.46  69.5 55.3 3.88 
3 49.5 35.3 3.02  52.3 38.0 2.68 
4 41.1 26.7 2.29  43.7 29.4 2.07 
5 36.0 21.4 1.86  38.6 24.1 1.71 
6 32.6 17.8 1.57  35.2 20.5 1.47 
7 30.2 15.1 1.37  32.7 17.9 1.30 
8 28.4 13.0 1.22  30.9 15.9 1.18 
9 27.0 11.3 1.10  29.5 14.3 1.08 
10 25.9 10.0 1.00  28.4 13.0 1.00 
11 25.0 8.8 0.92  27.5 11.9 0.94 
12 24.2 7.8 0.86  26.8 11.0 0.88 
13 23.6 7.0 0.80  26.1 10.3 0.84 
14 23.0 6.2 0.76  25.6 9.6 0.80 
15 22.6 5.5 0.71  25.2 9.0 0.77 
16 22.1 4.9 0.68  24.8 8.5 0.74 
17 21.8 4.4 0.65  24.4 8.1 0.72 
18 21.5 3.9 0.62  24.1 7.7 0.70 
19 21.2 3.4 0.60  23.9 7.3 0.68 
20 20.9 3.0 0.57  23.6 7.0 0.66 

 
  



41 

 

Figure 3.21 and Figure 3.22 plot the data in Table 3.14 for the 3% and 7% discount rates, 
respectively. The non-linear trends fit the power model 

𝐵𝐵 = 𝛼𝛼𝑖𝑖−𝛽𝛽 (8) 

where the estimated parameters are α and β. B is a placeholder for one of the three predicted 
variables and i is the index of the payback year. 

Table 3.15 summarizes the parameter estimates and R2 coefficient of determination for each 
model at the two discount rates. The high R2 values show that the models are a good predictor of 
the benefit proportion needed as a function of the desired payback period. This analysis suggests 
that to realize a positive return on the PTC investments, railroads must seek additional means to 
benefit from the deployed system. Considering this, Congress requested that the FRA conduct a 
study to assess the potential for PTC technology to help prevent rail-grade crossing accidents 
(Peters & Frittelli, 2018). That is, the extensive communication network of the PTC deployment 
can accommodate additional sensors at rail-grade crossings to help with conflict avoidance 
between vehicles on tracks and oncoming trains. Other possible business benefits can come from 
leveraging the sensing and communication system to improve line capacity, equipment 
utilization, service reliability, fuel savings, and real-time diagnostics. As the communication 
network is now in place, another benefit can come from adding sensors to detect track and 
roadbed problems as discussed in Section 3.5.2. 

 
Figure 3.21 Benefit proportion as a function of payback year at a 3% discount rate 

Source: (Bridgelall & Tolliver, 2020) 
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Figure 3.22  Benefit proportion as a function of payback year at a 7% discount rate 

Source: (Bridgelall & Tolliver, 2020) 

 
Table 3.15  Model Parameter Estimates 

 Benefit Proportion IRR BCR (10-Yr) 
Discount Rate α β R2 (%) α β R2 (%) α β R2 (%) 
3% 0.94 0.54 96.5 1.28 1.16 98.2 8.22 0.90 99.8 
7% 0.96 0.51 95.7 1.04 0.90 99.9 6.54 0.80 99.2 

 

3.5.2 Benefit Cost Analysis of Onboard Sensing 

The BCA’s main idea for onboard sensing equipment is to first determine a system price budget 
(SPB) as a function of the desired payback period in years. To generalize the analysis, the SPB 
should be a proportion of the average annual anticipated benefits (AAAB) that a railroad realized 
after deploying the system. As with PTC, benefits can extend beyond accident prevention alone. 
For example, consider that railroads can use the system to provide a real-time location function 
that can help their business optimize service and routing. In that case, they could add those as 
additional benefits anticipated because of higher operational efficiencies. Another potential use 
of the system is to measure ride quality and provide that as another piece of information 
customers can use to assess service quality. However, given the myriad of possible benefits, it is 
not within the scope of this analysis to determine a specific SPB. 

The optimization problem of Equations (3) to (5) provides a framework to derive the 
proportional SPB as a function of the desired payback period in years. The solution is to replace 
the annual operating and maintenance costs (AOMC), Ci, with a proportion of the AAAB, Bi, 
such that Ci = γ Bi, and the SPB as the initial investment I = α Bi. Doing so creates a generalized 
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expression that does not require determination of a specific AAAB to solve for the proportion of 
SPB as a function of the payback period of Y years. 

Figure 3.23 plots the solution where the vertical axis is the SPB as a factor of the AAAB. The 
calculations use two scenarios of AOMC of 15% and 25% of the SPB, both using a 7% discount 
rate. For example, if the AOMC is 25% of the SPB, allowing the SPB to be 2.5 times the AAAB, 
would realize a payback period of 10 years. If the AOMC drops to 15% of the SPB, then the SPB 
could increase to 3.5 times the AAAB. In general, the model shows that the SPB can increase as 
a logarithmic function with more time allowed to realize a return on the investment. The 
estimated logarithmic functions show that the high CV (R2) provides good confidence of using 
the closed-form model of the data to simplify calculations. 

The model coefficients depend on the AOMC as a proportion of the SPB as well as the discount 
rate. Therefore, railroads must solve the optimization problem to estimate parameters for the 
closed form model after determining both the AOMC as a proportion of SPB and the discount 
rate. The SPB can increase with the AAAB, keeping the ratio above 1.0 to accommodate the 
possibility for higher performance and more automated systems. 

 
Figure 3.23  Factor of annual benefit as a function of payback years and maintenance cost 
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3.5.3 Endnote 

The following publications from this project provide more in-depth analytical details and 
theoretical expansions of the matter reported in this section: 
 
Journal Articles 

1. Bridgelall, R., & Tolliver, D. (2022). “Budgeting the Adoption of Sensors on Connected 
Trains.” Transportation Planning and Technology, 45(1). DOI: 
10.1080/03081060.2021.2017205. 

2. Bridgelall, R., & Tolliver, D. (2020). “Closed Form Models to Assess Railroad 
Technology Investments.” Transportation Planning and Technology, 43(7). DOI:  
10.1080/03081060.2020.1805541. 

3. Bridgelall, R. & Tolliver, D. (2020). “A Cognitive Framework to Plan for the Future of 
Transportation.” Transportation Planning and Technology, 43(3). DOI: 
10.1080/03081060.2020.1735728. 

Conference Proceeding 
1. Bridgelall, R., King, B., Huang, Y., Tolliver, D., & Lu, P. (2019). “Sensor System 

Benefits and Costs in Positive Train Control.” In Sensors and Smart Structures 
Technologies for Civil, Mechanical, and Aerospace Systems 2019. International Society 
for Optics and Photonics (SPIE). DOI: 10.1117/12.2512882. 
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4. LIMITATIONS 

The FRA stated it does not require railroads to report accidents with financial losses below 
$10,500. Therefore, the exploratory data analysis would not include statistics or reveal patterns 
that include such accidents. Similarly, the ML algorithms would not have trained on data from 
such accident types and may, therefore, show some bias toward more expensive accidents. 
Another limitation is that financial losses do not include costs beyond those incurred to repair 
equipment, systems, and structures. For example, railroads do not necessarily include the cost of 
cleanup, lost freight, societal damages, fatalities, injuries, and line closures in their reported 
monetary loss. Therefore, benefits associated only with the avoidance of direct financial losses 
reported may be underestimated. The BCA analysis also does not include any external benefits 
such as the removal of truck traffic and their associated emissions by shifting traffic to railroads. 
In summary, analysts using the FRA dataset should be aware of these limitations and their 
potential impact on the results of the benefit-cost analysis. 
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5. CONCLUSIONS 

Freight railroads complement trucks by moving freight more efficiently across longer distances. 
Therefore, financial losses from accidents not only erode the profitability of railroads but such 
losses also create broader economic impact from reduced freight transport capacity. Analysis of 
the largest and most comprehensive railroad accident database, maintained by the Federal 
Railroad Administration (FRA), revealed that for more than a decade, railroads have been 
consistently losing revenue from accidents. On average, railroads have been involved in more 
than 2,500 accidents each year, which accounted for an average annual monetary loss of $376 
million. Overall, the annual trend in accident volume and the proportion of accident causes have 
been consistent. 

Regardless of their cause, there were four types of railroad accident: collisions, fire, derailments, 
and obstructions. Derailment type accidents were far more common than the other accident 
types. Exploratory data analysis (EDA) determined that derailment type accidents consistently 
account for more than 60% of the annual accidents. The trend in accident frequency by accident 
type showed that accidents consistently resulted in more than 1,500 derailments each year. 
Applying machine learning (ML) techniques to the accident database revealed that common 
factors in derailment type accidents were lower track classes, non-signalized territories, and areas 
with restricted limits of movement authorization. This suggests that railroads could focus 
technology deployments toward those higher-risk situations. Interestingly, the application of ML 
also revealed that derailment type accidents are generally not associated with human-caused 
accidents. Rather, derailments are typically the result of track and roadbed problems. Another 
finding was that yard tracks are generally associated with human-caused accidents. 

The finding that human-caused accidents dominated is consistent with the federal mandate to 
deploy a positive train control (PTC) system to help reduce those risks. The other main finding 
was that the next dominant accident cause of track and roadbed problems typically resulted in 
derailment type accidents. Given that derailments were the most common accident type, railroads 
are keen to understand the benefits and costs of deploying onboard sensing technologies to help 
reduce those risks. Such solutions also have the potential to leverage the communication 
networks of the deployed PTC system to enable backend signal processing and analysis. 
Railroads can use the benefit-cost model developed in this research to help analyze the tradeoff 
between technology costs, their potential benefits in accident prevention, and the payback period 
with different discount rate scenarios. 
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